Analysis of Bacterial Glycolipids by Capillary Electrophoresis-Electrospray Mass Spectrometry: Haemo
A number of invasive diseases are caused by human mucosal pathogens such as those of the genera Haemophilus, Neisseria, Moraxella, Campylobacter, and Bordetella. The bacterium N. gonorrhoeae infects mucosal surfaces of the genital tract, and can enter the bloodstream, survive, and cause secondary infections if protective antibodies are not raised in time (1). Both N. gonorrhoea and H. ducreyi are highly pathogenic, causing sexually transmitted diseases such as gonorrrhea and genital ulcers, respectively (2). The pathogens H. influenzae and N. meningitidis are uniquely adapted to colonize the human respiratory tracts and can lead to disseminated infections including otitis, and bacterial meningitis in young children (3,4). Through evolution, a number of these Gram-negative bacteria have elaborated surface antigens that mimic those found in human glycosphingolipids, thereby providing a mechanism for evading the innate immune system and enhancing their survival in the challenging environmental conditions of the host mucosa. While the exact mechanisms of colonization and invasion of H. influenzae and N. meningitidis are still poorly understood, it is generally recognized that lipopolysaccharides (LPS) play an important role in the virulence and pathogenicity of these organisms (5,6) and can associate with mucus and damaged epithelium of the human nasopharyngeal tissue (7).